552 research outputs found

    Living the Past in the Future

    Get PDF

    Engene: A genetic algorithm classifier for content-based recommender systems that does not require continuous user feedback

    Get PDF
    We present Engene, a genetic algorithm based classifier which is designed for use in content-based recommender systems. Once bootstrapped Engene does not need any human feedback. Although it is primarily used as an online classifier, in this paper we present its use as a one-class document batch classifier and compare its performance against that of a one-elms k-NN classifier

    A Navigation System for the Visually Impaired: A Fusion of Vision and Depth Sensor

    Get PDF
    For a number of years, scientists have been trying to develop aids that can make visually impaired people more independent and aware of their surroundings. Computer-based automatic navigation tools are one example of this, motivated by the increasing miniaturization of electronics and the improvement in processing power and sensing capabilities. This paper presents a complete navigation system based on low cost and physically unobtrusive sensors such as a camera and an infrared sensor. The system is based around corners and depth values from Kinect’s infrared sensor. Obstacles are found in images from a camera using corner detection, while input from the depth sensor provides the corresponding distance. The combination is both efficient and robust. The system not only identifies hurdles but also suggests a safe path (if available) to the left or right side and tells the user to stop, move left, or move right. The system has been tested in real time by both blindfolded and blind people at different indoor and outdoor locations, demonstrating that it operates adequately.</jats:p

    Hardware Based Scale- and Rotation-Invariant Feature Extraction: A Retrospective Analysis and Future Directions

    Get PDF
    Computer Vision techniques represent a class of algorithms that are highly computation and data intensive in nature. Generally, performance of these algorithms in terms of execution speed on desktop computers is far from real-time. Since real-time performance is desirable in many applications, special-purpose hardware is required in most cases to achieve this goal. Scale- and rotation-invariant local feature extraction is a low level computer vision task with very high computational complexity. The state-of-the-art algorithms that currently exist in this domain, like SIFT and SURF, suffer from slow execution speeds and at best can only achieve rates of 2-3 Hz on modern desktop computers. Hardware-based scale- and rotation-invariant local feature extraction is an emerging trend enabling real-time performance for these computationally complex algorithms. This paper takes a retrospective look at the advances made so far in this field, discusses the hardware design strategies employed and results achieved, identifies current research gaps and suggests future research directions

    Measuring the Coverage of Interest Point Detectors

    Get PDF
    Repeatability is widely used as an indicator of the performance of an image feature detector but, although useful, it does not convey all the information that is required to describe performance. This paper explores the spatial distribution of interest points as an alternative indicator of performance, presenting a metric that is shown to concur with visual assessments. This metric is then extended to provide a measure of complementarity for pairs of detectors. Several state-of-the-art detectors are assessed, both individually and in combination. It is found that Scale Invariant Feature Operator (SFOP) is dominant, both when used alone and in combination with other detectors

    An algorithm for the contextual adaption of SURF octave selection with good matching performance: best octaves.

    Get PDF
    Speeded-Up Robust Features is a feature extraction algorithm designed for real-time execution, although this is rarely achievable on low-power hardware such as that in mobile robots. One way to reduce the computation is to discard some of the scale-space octaves, and previous research has simply discarded the higher octaves. This paper shows that this approach is not always the most sensible and presents an algorithm for choosing which octaves to discard based on the properties of the imagery. Results obtained with this best octaves algorithm show that it is able to achieve a significant reduction in computation without compromising matching performance

    Functional consequence of a novel Y129C mutation in a patient with two contradictory melanocortin-2-receptor mutations

    Get PDF
    L F C and T-T C are supported by M R C Clinical Research Training Fellowships (grant numbers G0600408, G0700581) and L A M by the Wellcome Trust (grant number 076430/Z/05/7)
    • …
    corecore